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Non-equilibrium Green functions : generalized Wick’s theorem 
and diagrammatic perturbation theory with initial correlations 

A G Hall 
Physics Department, University of Hull, Hull, HU6 7RX, UK 

Received 8 July 1974 

Abstract. Wick‘s theorem is combined with a cluster decomposition to derive a generalized 
statistical Wick’s theorem for a non-equilibrium system with initial correlations. This 
enables a diagrammatic time-dependent perturbation theory which is a simple extension of 
the usual one to be developed for time-path causal statistical Green functions and their 
matrix equivalents. This provides a complete non-equilibrium theory. Reduction ofdiagrams 
and equations of motion for the Green functions are also discussed. 

1. Introduction 

The introduction of time-path and similar methods for non-equilibrium statistical 
Green functions (many-body propagators) has greatly facilitated their study, and their 
usefulness has been clearly demonstrated (Craig 1968, Korenman 1966, 1969, Mills 1969, 
Keldych 1965, Caroli et al 1971, Sandstrom 1970, Dubois 1966, Hall 1974, to be referred 
to as I ; this list is not exhaustive but hopefully representative). However, methods used 
have not taken into consideration initial correlations and therefore do not give a complete 
non-equilibrium many-body theory. Such a complete theory is found in the Liouville 
operator methods of Prigogine and co-workers (eg Prigogine 1962, Mayne and Prigogine 
1973) and great advances have been made in a number of general problems (eg Rosenfeld 
1972) and in problems of weakly interacting systems (eg Balescu 1963, Baus 1971). 
However, for certain problems difficulties arise ( I )  and it will be useful to have a non- 
equilibrium theory clearly related to the main body of many-body theory as represented 
by the statistical Green function methods. Fujita (1969, 1971) has derived such a theory 
using his diagrammatic method, but this is not entirely uniform with the usual diagram- 
matic Green function method. In this paper the time-path method is used to study the 
time-path causal statistical Green function for a non-equilibrium system with initial 
correlations, and the matrix equivalent of this Green function. 

In $ 2  Wick’s theorem for time-path ordered operators is combined with a cluster 
decomposition to derive a generalized statistical Wick’s theorem for a non-equilibrium 
system with initial correlations. No specification of the density matrix for the total 
system is required except that given by the specification of initial correlations. This 
Wick’s theorem is used to obtain a diagrammatic perturbation method including initial 
correlations, which is a simple extension of the usual one. This is the main purpose and 
result of the paper. The resulting rules are given in appendix 1. Two dentate structure 
theorems (proved in appendix 2 )  ensure that there is no contribution from unlinked 
graphs, where the concept of an unlinked graph is extended to include a class of graphs 
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having initial correlations. In Q 3 the reduction of graphs is considered and the self-energy 
function is introduced together with three other functions which play a similar role 
for correlated particles ; and finally the generalized equations of motion (Kadanoff and 
Baym equations) for non-equilibrium statistical Green functions are derived in terms 
of these functions. 

2. Perturbation series and Wick's theorem 

Definitions of notation are like those of a previous paper (I) and will only be repeated 
briefly where necessary for clarity. A non-relativistic momentum representation is 
used with the momentum-time pointp,t, denoted by 1. Many of the considerations are 
not specific to this representation and extension to the configurational space is simple. 
The basic contour causal statistical Green function is defined as the statistical average 
over a non-equilibrium density matrix of a time ordered pair of field creation and an- 
nihilation operators (I  § 2, Craig 1968, Mills 1969) 

G( 1 1 ') = - i ( T,[a( 1)a + ( 1 ')I), (1) 

T,  orders in the sense of the time path given below. In the interaction picture 

a( 1)a + ( 1 ') = U(  t ,t ,)a1( 1) U(t  , t ;  )a: ( 1') U( t ; t o )  

The T in (3) orders in the sense of the integral. In equation (2) the first U has its time 
arguments reversed from the usual order so that the time can be considered to run from 
to to t i  to t ,  and then back again to t o ;  T,  orders in the sense of this path. When the U 
are placed in equation (1) the overall T,  will order the factors in the U correctly both 
internally and also with respect to the creation and annihilation operators and the 
other U.  Thus the perturbation expansion of the statistical Green function is correctly 
and compactly given by 

n 

The integrals are over the path described above. 
The zeroth order term of the series is 

The 6,(t,-t,) are step functions which act in the direction of the path; K is + 1  for 
bosons and - 1 for fermions. n is the single-particle density matrix. It is convenient to 
separate the other reduced density matrices by the following equations into parts which 
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can be factorized into single-particle density matrices and correlated parts. Writing 
a, for a(p,t)  : 

n(p1p2d = <a:a1> = rl(P15Pzt) 
n,(PlP,P3P4t) = <a:a:a2a1> 

U m 

= n n(PrPst)ru-m({Pr}’ ,  { p s } ’ ~ ) .  
m = O  app 

P is the parity of the permutation of the operators needed to obtain the order of the 
arguments on the right from the order on the left. The sum app is over all possible ways 
of picking m pairs one from each of the sets ( p r }  i p s }  the remaining u - m  members of 
the sets { . . . 1 being the sets { . . . }’ which give the arguments of the correlation matrix 
rue,,, of u - m  particles. The correlation matrices are related to a cluster decomposition 
below. 

The potential in the interaction representation (not including exchange) is 

V( t )  = ( 2 q -  V(121’2’)a:(l)a:(2)a,(2’)a,(l’) t ,  = t ;  = t ,  = t ; .  ( 7 )  
12 

1 ’ 2 ’  

Any higher-order contribution to the perturbation series consists of potential factors, 
exponential factors as in equation (5 ) ,  and statistical averages of ordered products of 
creation and annihilation operators which can be evaluated at time t o .  Although all the 
operators in these products can be referred to the same time to their order is predeter- 
mined by the T,  of equation (4). It is useful therefore to keep T,  to signify the ordering. 
The T,-ordered products in the perturbation expansion are related to the normal (N) 
ordered products occurring in the definitions (6) of the reduced density matrices by 
Wick’s theorem in its original form (Wick 1950, Brown 1972). Denoting both creation 
and annihilation operators by b 

= N [ b l  b 2 . .  . b , - , b , ] + N [ b 1 b 2 . .  . b , - ,b , ]+  . . . + N [ b l b 2 . .  . b , -  ,bn] 

+ . . . + N[b16, . . . 6,- lb,] + . . . (8) 

All contractions (denoted by superscript dots) are zero except for those of pairs T,- 
ordered as ara: whose contraction is 6(p,-ps) .  The statistical averages of both sides of 
equation (8) are taken and the correlation decompositions (6) of averages of normal 
products substituted. The contractions then combine with averages of normal ordered 
pairs to give averages of time-ordered pairs. Hence a generalized statistical Wick’s 
theorem with all operators evaluated at the same time is 

U m 

( T , [ b 1 b 2 . .  . b 2 J )  = 1 rcpn (T,[b,b,])rc”-“TU-,(. . . pq  . . . t ) .  (10) 

The averages of time ordered pairs are either n, n’ or zero, this latter if the pair does not 

m = O  app 
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contain one annihilation and one creation operator. Replacing the time dependence in 
the operators gives 

U m 

(T,[b( l)b(2). . , b(2u)l) = 1 K~ n iCo(rs)d"'mr:-m( . . . q . . . t )  (1 1) 
m = O  app 

m 

r:(i . . . m, m ' .  . . 1') = fl exp[-icj(tj-to)+ir)(tj-to)]~,(p, . . . p , , p ; .  . .p',t).  (12) 
J = I  

This is still not quite convenient for developing a diagrammatic perturbation theory 
because of the problem of the ordering of the arguments in the correlation matrices. 
The argument in the r are paired in the sense that the jth argument from the left is 
associated with the jth argument from the right. From equation (6) interchange of 
arguments leads to a r differing only by K P ,  and such an interchange is only different 
if it leads to a different pairing (otherwise two operators must have been moved in similar 
ways giving an even number of interchanges). To generate all possible pairings it  is 
only necessary to carry out the m permutations of one of the sets of m arguments. Hence 
introducing 

the statistical Wick's theorem becomes 
U m 

(T,[b(l)b(2). . . b(2u)l) = c K~ fl iGo(rs)Ku-my:-m( . . . q . . . ). (14) 
m = O a p p  

The sum app now extends over all possible pairings of labels including those within y. 
The diagrammatic perturbation formalism is constructed in the usual way (Mills 

1969, Brown 1972) leading to the rules for Green functions as given by previous workers 
(Craig 1968, Mills 1969, I) but now it also includes initial correlations. It is convenient 
to represent y:(l . . . m, m' . . . 1') as in figure 1 by m directed lines running from j '  to j 
where j and j '  are paired labels, and these directed lines joined by a double line called a 
correlation bond. 

\" 

Figure 1. 

The directed lines and labelling associated with the y have the same combinational 
properties as those associated with the Green functions. Thus the overall is taken 
care of by the usual fermion loop rule as long as lines running through y are taken into 
account. Topological indistinguishability has its usual effects in reducing the number 
of graphs required. 

Using matrix representations (I Q 2, Craig 1968, Mills 1969) for the contour causal 
Green functions simplifies the time integration to a single part from to to tp the latest of 
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t ,  and t',. The time path from t o  to t ,  is C ,  and from t ,  to to it is C 2 ;  then 

3 J l l ' )  = G ( l l ' ) ~ , ,  t ,  E C, and t ,  E C ,  

Other matrix functions are similarly denoted by script letters. The appropriate matrix 
form for the correlation parts is 

yo(l  . . . m, m ' .  . . 1) 
m 

= n exp[-icj(tj - to)],u(-i~)mym(pl.. . p m , p 6 . .  .p;t)exp[ic;(tl-t,)]ii 
j =  1 

,u= [;), p = (1, - 1). 

(16) 

The real-time matrix Green functions generate real-time ordered matrix Green functions 
(I, $ 2 ) .  However, the correlation parts are the same no matter what the time ordering 
of the arguments. For convenience rules for the diagrams and their interpretation are 
given in appendix 1. 

The separation of the correlation matrices in equation (6) is the first step in a cluster 
decomposition which can be defined in the usual way (Kahn and Uhlenbeck 1938). 
Introducing the cluster matrices Xm(p, . . .p, ,pi .  . .p', , t )  these preserve the same 
pairings of arguments as in the density matrices from which they are derived. The 
cluster decomposition is symbolically 

nu = C K P  n X,. 
ac ( Z m = u I  

The sum ac is over all clusters of m pairs of arguments such that the total number of 
arguments is 2u. In order to allow for all pairings of arguments further cluster matrices 
are introduced by 

xm = (m!)-'Xm 

x1 = n, x 2  = Y 2 .  

The statistical Wick's theorem is 
n 

(T,[b(l)b(2). . . b(2u)l) = rc.1 iGo(rs) 1 K"x;(. . . 4 . .  .). (19) 

Diagrammatic rules are easily developed and are given in appendix 1. X: can be repre- 
sented in a similar way to $, thus giving rise to a cluster bond. However, in view of the 
possibility of a number of clusters it may be more convenient to simply place a distinctive 
mark through each line belonging to a separate cluster. In figure 2 all lines with an a 
on them belong to one cluster as distinct from the other clusters labelled by b etc. 

The cluster decomposition and therefore also the correlation decomposition is 
analytically valid only in the bulk limit (Kahn and Uhlenbeck 1938). However, this 
should not restrict the use of this formalism as the decomposition will be numerically 
valid even for small numbers of particles and small volumes. 

There are two useful theorems which limit the number of diagrams which contribute. 
These are the left dentate structure (LDS) and correlation dentate structure (CDS) theorems 

ac app ( T m = u - n )  
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Figure 2. 

discussed in appendix 2. If a diagram has an unlinked part this part must have an LDS 
and therefore the contribution from such a diagram is zero. Because a diagram with a 
CDS also contributes nothing the definition of the unlinked part can be extended to any 
part not joined to the main diagram by a potential bond or a Green function line. The 
LDS theorem has the effect of a causality principle ensuring that there is no contribution 
from times later than the latest time of interest t ,  and this enables the maximum real 
time to be taken at any later time including + CO. Then if the effects of initial correlations 
are not being studied the initial time to can be taken as - CO, so that the real time integral 
can run from -CO to + c13. 

3. Reduction of diagrams, self-energies and Kadanoff-Baym equations 

A self-energy part M is an insertion in a line as in figure 3 .  If the lines on either side of 
M are taken into consideration then the whole of the structure containing M can replace 
a line in a diagram giving another valid diagram. Other line replacements contain 
similar structures denoted by C, E ,  D but the central graph is joined as in figure 3 to the 
ingoing, outgoing or both lines respectively by a cluster bond 

U G O O  M C D E 

Figure 3. 

Conversely if these structures occur in a graph then if they are replaced by a line the 
resulting graph is still valid. Such structures are therefore line-replaceable. The statistical 
Green function G is the sum of all permutations to all orders of all line-replaceable parts. 
The definition of a proper graph can be generalized: a proper graph has no two portions 
which are connected by less than two lines or one line and one cluster bond. The self- 
energy function A4 corresponds to the sum of all proper graphs having no cluster bond 
to ingoing or outgoing lines. Similarly a function D corresponds to the sum of all proper 
graphs with cluster bonds to ingoing and outgoing lines and including these lines. 
Convenient functions C and E are obtained by first defining CP and EP corresponding 
to sums of all proper graphs having the correct cluster bond ; then symbolically 

n = O  n = O  
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The interative equations for the matrix forms V are Q 

V(11’) = A(1-l‘)+ 

B(l1’) = A(1-l’)+ dt2xIP(12)€(21’) 6” 2 

A(1 - 1’) = 6(p1 -p;)6(t1 -t: ) (; 
Now Go and D can be joined on the right by M and C and on the left by M and E. C 
can be joined on the right by M and C and on the left by Go,  D and C. E can be joined 
on the right by Go, D and E and on the left by M and E. Thus the line-replaceable 
elements can only be joined together in certain ways. Taking this into consideration 
the iterative equation for G in symbolic form is 

G = E ( G , + D ) C + E ( G O + D ) C M G .  (23) 

Line replacements for lines running to and from cluster bonds will contain the graphs 
of figures 4 (a and b) respectively 

Figure 4. 

In figure 4(a) the initial structure may represent either M or C and in figure 4(b) the final 
structure may represent either M or E. These structures therefore represent the functions 
written symbolically as 

(C- l )+CMG 

G M E  +(E  4). (24) 
The sums of all possible line-replaceable parts for lines running to and from cluster bonds 
are in matrix form 

9(11’) = 1; dt, dt3 6 ( p ,  - p 2 )  exp[ - i c l ( t l  -t2)1jM(23) 
23  

H(11’) = 1 ~ d r , d r 3 ~  2 3  (A(l2)+ [rdr,x9(14),4l(42)) 4 

x 6(23)p6(p3 - p i )  exp[-ic;(t, - t i ) ] .  

9 is a row matrix and X a column matrix. The corresponding equations for non-matrix 
F and H are obvious from inspection of equations (25). 
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The usual definition of an irreducible graph can be generalized to: an irreducible 
graph contains no line-replaceable parts. The rules in appendix 1 can now be amended 
so that only irreducible graphs are used and all lines represent G, F or H (9, F, i f )  

respectively. 
Previous approaches to non-equilibrium Green functions have used equation-of- 

motion and functional-integration methods which usually start from an equation for the 
Green function and proceed via a self-energy function. A familiar version is the method 
studied by Kadanoff and Baym (1962). Since these methods neglect initial correlations 
it is of interest to derive the generalized Kadanoff and Baym equations for a system with 
initial correlations. This has been done previously by Fujita (1969, 1971); however, the 
time-path method gives a more compact and explicit derivation and result, and estab- 
lishes the equations in the matrix form. The equations of motion for the statistical Green 
functions are derived in the usual way (Kadanoff and Baym 1962) by differentiating 
definition (1 )  and using the equations of motion for the creation and annihilation 
operators. 

t ,  = t ,  = tz = t ,  

G‘2’(1234) = - ( T , [ u ( ~ ) u ( ~ ) u + ( ~ ) u + ( ~ ) ] ) .  

The delta function on the time path, h,( t ,  - 2,). arises from differentiation of the time-path 
step function e,(t, - t , ) .  On C2 this step function acts in the reverse direction of physical 
time. Hence 

+6( t ,  - t i )  t , , t ; E C ,  i - d ( t ,  - t i )  t , , t ; E C , .  
s, ( t , - t ; )  = 

The matrix forms of equations (26) (27) are 

t ,  = t ,  = t 2  = L, 

Y ~ f ~ 2 L l j n 4 (  1234) *= G‘2’(1234)~,,~,, , t i  E cn, . 

When a perturbation expansion is made of the two-particle Green function the second 
term on the right-hand side is generated by terms represented by the diagram of figure 
4(a). Therefore 

(i$ - ~ , ) ~ ( l l ‘ )  = %?(ll‘)+ dt2 dt3 %(12),44(23)9(31’) 1; 2 3  

( - i &  -c;)%(ll’) = &‘(ll’)+ 1; dt2 dt3 c23(12),44(23)6(37’). 23  (31) 

The derivation of the second of these equations is similar to that of the first. These are 
the generalized Kadanoff and Baym equations. The perturbation expansion of M can 
be divided into two parts: the sum M“ of terms which contain clusters; and the sum 
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Mu of terms which do not. Then using the A(1- 1’) contained in %? and d 

( i$  -e,)%(ll’)  = A(1 - l ’ )+  dt, ~ ~ u ( 1 2 ) Y ( 2 1 ’ ) + 9 ( 1 1 ’ )  I” 2 

( -i$ -e’,)9(11’) = A(1 -l’)+ dt, 1 3(12),4!u(21’)+9(11’). (32) i” 2 

Initial correlation effects are contained in 4 and f hence on neglect of initial correlations 
equations of the usual Kadanoff and Baym kind result (I, 9 2). 9 and 3 can easily be 
expressed in terms of A‘, 4, E; %? and 3 

4. Conclusions 

By generalizing the statistical Wick’s theorem to include a cluster decomposition of 
initial correlations a complete non-equilibrium many-body theory has been derived 
based on a diagrammatic perturbation method. This diagrammatic perturbation 
method is a simple extension of the usual one for statistical Green functions. The non- 
equilibrium statistical Green function and its time derivatives can in principle be 
expressed in terms of a few functions including a self-energy function as in the equilibrium 
case. However, three other functions are also needed because of the initial correlations. 

Non-equilibrium Green functions have already been used to study a variety of prob- 
lems, and it is to be expected that the formalism developed in this paper can be used to 
extend the range greatly. 

Appendix 1. Diagrammar 

A diagram contributing to the nth order term in the perturbation series for the single 
particle Green function has : 

(a) n potential bonds 
(b) 2n+ 1 directed lines such that : 

each line begins and ends on a vertex except for one ingoing and one outgoing line; 
there are two ingoing and two outgoing lines to each potential bond ; 

(c) a single correlation bond may be joined once to any line to link any 
number of the lines; 

(6) all lines carry a different time-momentum label at each end. 

All topologically different diagrams contribute. The topology includes the effect of line 
direction but care must be taken in this because of dummy labels. Topology also includes 
whether a line is joined to the correlation bond, but not the manner in which it is joined. 
Diagrams having an unlinked part or a CDS give zero contribution. 

When constructing diagrams with clusters rule (c) is replaced by : 

(c’) any line may be joined once by one cluster bond to any number of 
other lines. Subject to this and the availability of lines there may be 
any number of clusters. 

Diagrams with different clusterings have different topology. 
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Using time-path functions the corresponding expression in the perturbation expansion 

( l a )  for every potential bond with ingoing labels r’s‘ and outgoing labels rs 

is obtained by writing 

( 1  b) for every line not joined to a correlation or cluster bond and starting 
with label s and ending with label r Go(rs); 

( I C )  for the correlation bond if any ( -  iK)“$(l . . . s . . . m, m‘ . . . s’ . . . l’) ,  
or for cluster bonds ( - i ~ ) ~ ~ : ( l  , . . s . .  . m, m‘.  . . s’.  . , 1’)  where 11’,  
ss’ and mm’ are ending and beginning labels of lines joined to the 
bond. The precise ordering of the pairs is unimportant. 

( Id)  An overall factor K~ where L is the number of closed particle loops. 

( 2 4  for the potential bond 
Using real-time matrix functions the expression is obtained by writing 

a, etc = 1 or 2, v1 = - v2222  = 1 other elements zero 
(2b) for the line 32,&s); 
(2c) for a line running from a correlation or cluster bond to label 

for a line running to a correlation or cluster bond from label 
r’ exp[ic:(t: - t,,)]ji,,; 
for the bond (- iK)”ym(p1 . . . p ,  . . . p , , p L .  . . p i .  . .p i to)  or ( -  iK)mXm; 

It is also possible to use time-ordered matrix functions. Diagrams are given an explicit 
time direction; a convenient choice has physical time running from right to left as in the 
Prigogine (1962) and Fujita (1966) diagrams. Potential bonds are drawn so that their 
ends have the same time (vertically). The correlation and cluster bonds are drawn at the 
earliest time (extreme right). (In practice this is not entirely essential as long as the bond 
is understood to be in this place.) Diagrams are now different if the time ordering of 
the potential vertices is different. The interpretation is now 

(3a)  as (2a) but the time integral runs from to  to the time associated with 
the next later vertex ; 

(3b)  as (2b) but a line running with time is interpreted as $9’ and against 
time as $9- (see I equations (1 1 ) )  

r exP[- icr ( t r  - 4&4ar 

( 2 4  as (Id). 

(3c, d )  as (2c, d). 

The matrix rules simplify when there are parallel elements (I appendix A). 

Appendix 2. Dentate structure theorems 

The graph of figure 5 has a part containing a potential bond not joined to the rest of the 
diagram except by lines first joined to the correlation bond. Such a graph has a correla- 
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Figure 5. 

tion dentate structure (CDS) and contributes nothing to the perturbation series. From 
the rules (A.2) the matrix parts of the contributions from this diagram are 

‘Left dentate structure’ (LDS) (Fujita 1966) refers to a part of a time-ordered graph 
as in figure 6 containing a potential bond at a later time than any bond to which it is 
immediately connected. Any number of the lines can be connected to a correlation bond. 
A diagram containing an LDS contributes nothing. 

I ,  

Figure 6. 

Again only the matrix parts are required and the possible contributions are shown in 
expressions (A.4) with a summation over the index e = 1,2. The p and a can be combined 
to give the first simplification. The elements of 3,: and Y:2 are equal (I, equations (1 1)) 
for any e and 9’ can be ignored. The elements of 9Te and of 9,  change sign only under 
e. The sign of the e = 2 contribution relative to the e = 1 contribution is given in the 
final column; in every case it is negative. Summing over e gives zero contribution. 

Y;eY,a,Y:Ye+d -+ 9-9-0 + (-) ( - ) ( - )  

9&iene9:9; + 9- + (-1 
fiefieaeY,f,Ye+d + 0 -+ (--) 

9a;9&epe9e+d + 9-9 -a -+  (-)(-)(-) 

Yi9Gaepepe + 9-9-0 + ( - ) ( - I ( - )  
9kPeaepeYe+d + 9- + (-)  

PePeoepe%e+d -+ a + (-)  

QaiPeaePePe + 9- + (-1. 
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